Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 185, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167702

RESUMEN

Biological nanostructures change their shape and function in response to external stimuli, and significant efforts have been made to design artificial biomimicking devices operating on similar principles. In this work we demonstrate a programmable nanofluidic switch, driven by elastocapillarity, and based on nanochannels built from layered two-dimensional nanomaterials possessing atomically smooth surfaces and exceptional mechanical properties. We explore operational modes of the nanoswitch and develop a theoretical framework to explain the phenomenon. By predicting the switching-reversibility phase diagram-based on material, interfacial and wetting properties, as well as the geometry of the nanofluidic circuit-we rationally design switchable nano-capsules capable of enclosing zeptoliter volumes of liquid, as small as the volumes enclosed in viruses. The nanoswitch will find useful application as an active element in integrated nanofluidic circuitry and could be used to explore nanoconfined chemistry and biochemistry, or be incorporated into shape-programmable materials.

2.
Nano Lett ; 24(2): 601-606, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38180909

RESUMEN

Electronic spectra of solids subjected to a magnetic field are often discussed in terms of Landau levels and Hofstadter-butterfly-style Brown-Zak minibands manifested by magneto-oscillations in two-dimensional electron systems. Here, we present the semiclassical precursors of these quantum magneto-oscillations which appear in graphene superlattices at low magnetic field near the Lifshitz transitions and persist at elevated temperatures. These oscillations originate from Aharonov-Bohm interference of electron waves following open trajectories that belong to a kagome-shaped network of paths characteristic for Lifshitz transitions in the moire superlattice minibands of twistronic graphenes.

3.
Angew Chem Int Ed Engl ; 62(52): e202314537, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37966039

RESUMEN

In nature and technologies, many chemical reactions occur at interfaces with dimensions approaching that of a single reacting species in nano- and angstrom-scale. Mechanisms governing reactions at this ultimately small spatial regime remain poorly explored because of challenges to controllably fabricate required devices and assess their performance in experiment. Here we report how efficiency of electrochemical reactions evolves for electrodes that range from just one atom in thickness to sizes comparable with and exceeding hydration diameters of reactant species. The electrodes are made by encapsulating graphene and its multilayers within insulating crystals so that only graphene edges remain exposed and partake in reactions. We find that limiting current densities characterizing electrochemical reactions exhibit a pronounced size effect if reactant's hydration diameter becomes commensurable with electrodes' thickness. An unexpected blockade effect is further revealed from electrodes smaller than reactants, where incoming reactants are blocked by those adsorbed temporarily at the atomically narrow interfaces. The demonstrated angstrom-scale electrochemistry offers a venue for studies of interfacial behaviors at the true molecular scale.

4.
Nano Lett ; 22(23): 9566-9570, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36449567

RESUMEN

Recent experiments demonstrated that interfacial water dissociation (H2O ⇆ H+ + OH-) could be accelerated exponentially by an electric field applied to graphene electrodes, a phenomenon related to the Wien effect. Here we report an order-of-magnitude acceleration of the interfacial water dissociation reaction under visible-light illumination. This process is accompanied by spatial separation of protons and hydroxide ions across one-atom-thick graphene and enhanced by strong interfacial electric fields. The found photoeffect is attributed to the combination of graphene's perfect selectivity with respect to protons, which prevents proton-hydroxide recombination, and to proton transport acceleration by the Wien effect, which occurs in synchrony with the water dissociation reaction. Our findings provide fundamental insights into ion dynamics near atomically thin proton-selective interfaces and suggest that strong interfacial fields can enhance and tune very fast ionic processes, which is of relevance for applications in photocatalysis and designing reconfigurable materials.

5.
Nano Lett ; 22(15): 6268-6275, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35857927

RESUMEN

Van der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS2 monolayers interlayered with 1T TaS2 monolayers displaying charge density waves (CDW). This bulk vdW heterostructure is created by phase transition of 1T-TaS2 to 6R at 800 °C in an inert atmosphere. Its superconducting transition (Tc) is found at 2.6 K, exceeding the Tc of the bulk 2H phase. Using first-principles calculations, we argue that the coexistence of superconductivity and CDW within 6R-TaS2 stems from amalgamation of the properties of adjacent 1H and 1T monolayers, where the former dominates the superconducting state and the latter the CDW behavior.

6.
Nat Commun ; 13(1): 4031, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821120

RESUMEN

Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of ∼0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale.

8.
Adv Mater ; 34(16): e2110464, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35084782

RESUMEN

Liquid crystal devices using organic molecules are nowadays widely used to modulate transmitted light, but this technology still suffers from relatively weak response, high cost, toxicity and environmental concerns, and cannot fully meet the demand of future sustainable society. Here, an alternative approach to color-tunable optical devices, which is based on sustainable inorganic liquid crystals derived from 2D mineral materials abundant in nature, is described. The prototypical 2D mineral of vermiculite is massively produced by a green method, possessing size-to-thickness aspect ratios of >103 , in-plane magnetization of >10 emu g-1 , and an optical bandgap of >3 eV. These characteristics endow 2D vermiculite with sensitive magneto-birefringence response, been several orders of magnitude larger than organic counterparts, as well as capability of broad-spectrum modulation. The finding consequently permits the fabrication of various magnetochromic or mechanochromic devices with low or even zero-energy consumption during operation. This work creates opportunities for the application of sustainable materials in advanced optics.

9.
Adv Mater ; 33(39): e2103257, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34365697

RESUMEN

Superconductors with nontrivial band structure topology represent a class of materials with unconventional and potentially useful properties. Recent years have seen much success in creating artificial hybrid structures exhibiting the main characteristics of 2D topological superconductors. Yet, bulk materials known to combine inherent superconductivity with nontrivial topology remain scarce, largely because distinguishing their central characteristic-the topological surface states-has proved challenging due to a dominant contribution from the superconducting bulk. In this work, a highly anomalous behavior of surface superconductivity in topologically nontrivial 3D superconductor In2 Bi, where the surface states result from its nontrivial band structure, itself a consequence of the non-symmorphic crystal symmetry and strong spin-orbit coupling, is reported. In contrast to smoothly decreasing diamagnetic susceptibility above the bulk critical field, Hc2 , as seen in conventional superconductors, a near-perfect, Meissner-like screening of low-frequency magnetic fields well above Hc2 is observed. The enhanced diamagnetism disappears at a new phase transition close to the critical field of surface superconductivity, Hc3 . Using theoretical modeling, the anomalous screening is shown to be consistent with modification of surface superconductivity by the topological surface states. The possibility of detecting signatures of the surface states using macroscopic magnetization provides a new tool for the discovery and identification of topological superconductors.

10.
Nano Lett ; 21(15): 6678-6683, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34296602

RESUMEN

We describe how the out-of-plane dielectric polarizability of monolayer graphene influences the electrostatics of bilayer graphene-both Bernal (BLG) and twisted (tBLG). We compare the polarizability value computed using density functional theory with the output from previously published experimental data on the electrostatically controlled interlayer asymmetry potential in BLG and data on the on-layer density distribution in tBLG. We show that monolayers in tBLG are described well by polarizability αexp = 10.8 Å3 and effective out-of-plane dielectric susceptibility ϵz = 2.5, including their on-layer electron density distribution at zero magnetic field and the interlayer Landau level pinning at quantizing magnetic fields.

11.
Nano Lett ; 21(15): 6356-6358, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34296884
12.
Nat Commun ; 12(1): 3092, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035239

RESUMEN

Membrane-based applications such as osmotic power generation, desalination and molecular separation would benefit from decreasing water friction in nanoscale channels. However, mechanisms that allow fast water flows are not fully understood yet. Here we report angstrom-scale capillaries made from atomically flat crystals and study the effect of confining walls' material on water friction. A massive difference is observed between channels made from isostructural graphite and hexagonal boron nitride, which is attributed to different electrostatic and chemical interactions at the solid-liquid interface. Using precision microgravimetry and ion streaming measurements, we evaluate the slip length, a measure of water friction, and investigate its possible links with electrical conductivity, wettability, surface charge and polarity of the confining walls. We also show that water friction can be controlled using hybrid capillaries with different slip lengths at opposing walls. The reported advances extend nanofluidics' toolkit for designing smart membranes and mimicking manifold machinery of biological channels.

13.
Adv Mater ; 33(11): e2007682, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33522015

RESUMEN

2D nanoslit devices, where two crystals with atomically flat surfaces are separated by only a few nanometers, have attracted considerable attention because their tunable control over the confinement allows for the discovery of unusual transport behavior of gas, water, and ions. Here, the passage of double-stranded DNA molecules is studied through nanoslits fabricated from exfoliated 2D materials, such as graphene or hexagonal boron nitride, and the DNA polymer behavior is examined in this tight confinement. Two types of events are observed in the ionic current: long current blockades that signal DNA translocation and short spikes where DNA enters the slits but withdraws. DNA translocation events exhibit three distinct phases in their current-blockade traces-loading, translation, and exit. Coarse-grained molecular dynamics simulation allows the different polymer configurations of these phases to be identified. DNA molecules, including folds and knots in their polymer structure, are observed to slide through the slits with near-uniform velocity without noticeable frictional interactions of DNA with the confining graphene surfaces. It is anticipated that this new class of 2D-nanoslit devices will provide unique ways to study polymer physics and enable lab-on-a-chip biotechnology.


Asunto(s)
ADN/química , Nanoporos , Grafito/química , Conformación Molecular , Simulación de Dinámica Molecular
14.
Sci Adv ; 6(49)2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33277256

RESUMEN

In van der Waals heterostructures, electronic bands of two-dimensional (2D) materials, their nontrivial topology, and electron-electron interactions can be markedly changed by a moiré pattern induced by twist angles between different layers. This process is referred to as twistronics, where the tuning of twist angle can be realized through mechanical manipulation of 2D materials. Here, we demonstrate an experimental technique that can achieve in situ dynamical rotation and manipulation of 2D materials in van der Waals heterostructures. Using this technique, we fabricated heterostructures where graphene is perfectly aligned with both top and bottom encapsulating layers of hexagonal boron nitride. Our technique enables twisted 2D material systems in one single stack with dynamically tunable optical, mechanical, and electronic properties.

15.
Nano Lett ; 20(12): 8634-8639, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33179495

RESUMEN

Blue energy converts the chemical potential difference from salinity gradients into electricity via reverse electrodialysis and provides a renewable source of clean energy. To achieve high energy conversion efficiency and power density, nanoporous membrane materials with both high ionic conductivity and ion selectivity are required. Here, we report ion transport through a network of holey-graphene-like sheets made by bottom-up polymerization. The resulting ultrathin membranes provide controlled pores of <10 Å in diameter with an estimated density of about 1012 cm-2. The pores' interior contains NH2 groups that become electrically charged with varying pH and allow tunable ion selectivity. Using the holey-graphene-like membranes, we demonstrate power outputs reaching hundreds of watts per square meter. The work shows a viable route toward creating membranes with high-density angstrom-scale pores, which can be used for energy generation, ion separation, and related technologies.

16.
Nature ; 584(7820): 215-220, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32788735

RESUMEN

Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure1-5. An example is the creation of weakly dispersive, 'flat' bands in bilayer graphene for certain 'magic' angles of twist between the orientations of the two layers6. The quenched kinetic energy in these flat bands promotes electron-electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition7-9, resulting in a periodically modulated pseudo-magnetic field10-14, which in turn creates a 'post-graphene' material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state15-17. This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands.

17.
ACS Nano ; 14(6): 7280-7286, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32427466

RESUMEN

Defect-free graphene is impermeable to gases and liquids but highly permeable to thermal protons. Atomic-scale defects such as vacancies, grain boundaries, and Stone-Wales defects are predicted to enhance graphene's proton permeability and may even allow small ions through, whereas larger species such as gas molecules should remain blocked. These expectations have so far remained untested in experiment. Here, we show that atomically thin carbon films with a high density of atomic-scale defects continue blocking all molecular transport, but their proton permeability becomes ∼1000 times higher than that of defect-free graphene. Lithium ions can also permeate through such disordered graphene. The enhanced proton and ion permeability is attributed to a high density of eight-carbon-atom rings. The latter pose approximately twice lower energy barriers for incoming protons compared to that of the six-atom rings of graphene and a relatively low barrier of ∼0.6 eV for Li ions. Our findings suggest that disordered graphene could be of interest as membranes and protective barriers in various Li-ion and hydrogen technologies.

18.
ACS Nano ; 14(1): 993-1002, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31815429

RESUMEN

Marcus-Hush theory of electron transfer is one of the pillars of modern electrochemistry with a large body of supporting experimental evidence presented to date. However, some predictions, such as the electrochemical behavior at disk ultramicroelectrodes, remain unverified. Herein, we present a study of electron tunneling across a hexagonal boron nitride acting as a barrier between a graphite electrode and redox mediators in a liquid solution. This was achieved by the fabrication of disk ultramicroelectrodes with a typical diameter of 5 µm. Analysis of voltammetric measurements, using two common outer-sphere redox mediators, yielded several electrochemical parameters, including the electron transfer rate constant, limiting current, and transfer coefficient. They depart significantly from the Butler-Volmer kinetics and instead show behavior previously predicted by the Marcus-Hush theory of electron transfer. In addition, our system provides a noteworthy experimental platform, which could be applied to address a number of scientific problems such as identification of reaction mechanisms, surface modification, or long-range electron transfer.

19.
Nature ; 576(7785): 75-79, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31802019

RESUMEN

Hydrodynamics, which generally describes the flow of a fluid, is expected to hold even for fundamental particles such as electrons when inter-particle interactions dominate1. Although various aspects of electron hydrodynamics have been revealed in recent experiments2-11, the fundamental spatial structure of hydrodynamic electrons-the Poiseuille flow profile-has remained elusive. Here we provide direct imaging of the Poiseuille flow of an electronic fluid, as well as a visualization of its evolution from ballistic flow. Using a scanning carbon nanotube single-electron transistor12, we image the Hall voltage of electronic flow through channels of high-mobility graphene. We find that the profile of the Hall field across the channel is a key physical quantity for distinguishing ballistic from hydrodynamic flow. We image the transition from flat, ballistic field profiles at low temperatures into parabolic field profiles at elevated temperatures, which is the hallmark of Poiseuille flow. The curvature of the imaged profiles is qualitatively reproduced by Boltzmann calculations, which allow us to create a 'phase diagram' that characterizes the electron flow regimes. Our results provide direct confirmation of Poiseuille flow in the solid state, and enable exploration of the rich physics of interacting electrons in real space.

20.
Nano Lett ; 19(12): 8526-8532, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31664847

RESUMEN

In graphite crystals, layers of graphene reside in three equivalent, but distinct, stacking positions typically referred to as A, B, and C projections. The order in which the layers are stacked defines the electronic structure of the crystal, providing an exciting degree of freedom which can be exploited for designing graphitic materials with unusual properties including predicted high-temperature superconductivity and ferromagnetism. However, the lack of control of the stacking sequence limits most research to the stable ABA form of graphite. Here, we demonstrate a strategy to control the stacking order using van der Waals technology. To this end, we first visualize the distribution of stacking domains in graphite films and then perform directional encapsulation of ABC-rich graphite crystallites with hexagonal boron nitride (hBN). We found that hBN encapsulation, which is introduced parallel to the graphite zigzag edges, preserves ABC stacking, while encapsulation along the armchair edges transforms the stacking to ABA. The technique presented here should facilitate new research on the important properties of ABC graphite.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...